skip to main content


Search for: All records

Creators/Authors contains: "Srishankar, Nishan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present an open-source framework that provides a low barrier to entry for real-time simulation, visualization, and interactive manipulation of user-specifiable soft-bodies, environments, and robots (using a human-readable front-end interface). The simulated soft-bodies can be interacted by a variety of input interface devices including commercially available haptic devices, game controllers, and the Master Tele-Manipulators (MTMs) of the da Vinci Research Kit (dVRK) with real-time haptic feedback. We propose this framework for carrying out multi-user training, user-studies, and improving the control strategies for manipulation problems. In this paper, we present the associated challenges to the development of such a framework and our proposed solutions. We also demonstrate the performance of this framework with examples of soft-body manipulation and interaction with various input devices. 
    more » « less
  2. null (Ed.)
    Interactive simulators are used in several important applications which include the training simulators for teleoperated robotic laparoscopic surgery. While stateof-art simulators are capable of rendering realistic visuals and accurate dynamics, grasping is often implemented using kinematic simplification techniques that prevent truly multimanual manipulation, which is often an important requirement of the actual task. Realistic grasping and manipulation in simulation is a challenging problem due to the constraints imposed by the implementation of rigid-body dynamics and collision computation techniques in state-of-the-art physics libraries. We present a penalty based parametric approach to achieve multi-manual grasping and manipulation of complex objects at arbitrary postures in a real-time dynamic simulation. This approach is demonstrated by accomplishing multi-manual tasks modeled after realistic scenarios, which include the grasping and manipulation of a two-handed screwdriver task and the manipulation of a deformable thread. 
    more » « less